

SEMESTER-I

COURSE 1: ESSENTIALS AND APPLICATIONS OF MATHEMATICAL, PHYSICAL AND CHEMICAL SCIENCES

Theory Credits: 4 5 hrs/week

Course Objective:

The objective of this course is to provide students with a comprehensive understanding of the essential concepts and applications of mathematical, physical, and chemical sciences. The course aims to develop students' critical thinking, problem-solving, and analytical skills in these areas, enabling them to apply scientific principles to real-world situations.

Learning outcomes:

- 1. Apply critical thinking skills to solve complex problems involving complex numbers, trigonometric ratios, vectors, and statistical measures.
- 2. To Explain the basic principles and concepts underlying a broad range of fundamental areas of physics and to Connect their knowledge of physics to everyday situations
- 3. To Explain the basic principles and concepts underlying a broad range of fundamental areas of chemistry and to Connect their knowledge of chemistry to daily life.
- 4. Understand the interplay and connections between mathematics, physics, and chemistry in various applications. Recognize how mathematical models and physical and chemical principles can be used to explain and predict phenomena in different contexts.
- 5 To explore the history and evolution of the Internet and to gain an understanding of network security concepts, including threats, vulnerabilities, and countermeasures.

UNIT I: ESSENTIALS OF MATHEMATICS:

Complex Numbers: Introduction of the new symbol i – General form of a complex number – Modulus-Amplitude form and conversions

Trigonometric Ratios: Trigonometric Ratios and their relations – Problems on calculation of angles **Vectors:** Definition of vector addition – Cartesian form – Scalar and vector product and problems **Statistical Measures**: Mean, Median, Mode of a data and problems

UNIT II: ESSENTIALS OF PHYSICS:

Definition and Scope of Physics- Measurements and Units - Motion of objects: Newtonian Mechanics and relativistic mechanics perspective - Laws of Thermodynamics and Significance- Acoustic waves and electromagnetic waves- Electric and Magnetic fields and their interactions- Behaviour of atomic and nuclear particles- Wave-particle duality, the uncertainty principle- Theories and understanding of universe

UNIT III: ESSENTIALS OF CHEMISTRY:

Definition and Scope of Chemistry-Importance of Chemistry in daily life -Branches of chemistry and significance-Periodic Table-Electronic Configuration, chemical changes, classification of matter, Biomolecules- carbohydrates, proteins, fats and vitamins.

UNIT IV: APPLICATIONS OF MATHEMATICS, PHYSICS & CHEMISTRY:

Applications of Mathematics in Physics & Chemistry: Calculus, Differential Equations & Complex Analysis

Application of Physics in Industry and Technology: Electronics and Semiconductor Industry, Robotics and Automation, Automotive and Aerospace Industries, Quality Control and Instrumentation, Environmental Monitoring and Sustainable Technologies.

Application of Chemistry in Industry and Technology: Chemical Manufacturing, Pharmaceuticals and Drug Discovery, Materials Science, Food and Beverage Industry.

UNIT V: ESSENTIALS OF COMPUTER SCIENCE:

Milestones of computer evolution - Internet, history, Internet Service Providers, Types of Networks, IP, Domain Name Services, applications.

Ethical and social implications: Network and security concepts- Information Assurance Fundamentals, Cryptography-Symmetric and Asymmetric, Malware, Firewalls, Fraud Techniques- Privacy and Data Protection

Recommended books:

- 1. Functions of one complex variable by John.B.Conway, Springer- Verlag.
- 2. Elementary Trigonometry by H.S.Hall and S.R.Knight
- 3. Vector Algebra by A.R. Vasishtha, Krishna Prakashan Media(P)Ltd.
- 4. Basic Statistics by B.L. Agarwal, New age international Publishers
- 5. University Physics with Modern Physics by Hugh D. Young and Roger A. Freedman
- 6. Fundamentals of Physics by David Halliday, Robert Resnick, and Jearl Walker
- 7. Physics for Scientists and Engineers with Modern Physics" by Raymond A. Serway and John W. Jewett Jr.
- 8. Physics for Technology and Engineering" by John Bird
- 9. Chemistry in daily life by Kirpal Singh
- 10. Chemistry of bio molecules by S. P. Bhutan
- 11. Fundamentals of Computers by V. Raja Raman
- 12. Cyber Security Essentials by James Graham, Richard Howard, Ryan Olson

STUDENT ACTIVITIES

UNIT I: ESSENTIALS OF MATHEMATICS:

1: Complex Number Exploration

Provide students with a set of complex numbers in both rectangular and polar forms.

They will plot the complex numbers on the complex plane and identify their properties

2: Trigonometric Ratios Problem Solving

Give students a set of problems that require the calculation of trigonometric ratios and their relations.

Students will solve the problems using the appropriate trigonometric functions (sine, cosine, tangent, etc.) and trigonometric identities.

3: Vector Operations and Applications

Provide students with a set of vectors in Cartesian form.

Students will perform vector addition and subtraction operations to find the resultant vectors.

They will also calculate the scalar and vector products of given vectors.

4: Statistical Measures and Data Analysis

Give students a dataset containing numerical values.

Students will calculate the mean, median, and mode of the data, as well as other statistical measures if appropriate (e.g., range, standard deviation).

They will interpret the results and analyze the central tendencies and distribution of the data.

UNIT II: ESSENTIALS OF PHYSICS:

1. Concept Mapping

Divide students into groups and assign each group one of the topics.

Students will create a concept map illustrating the key concepts, relationships, and applications related to their assigned topic.

Encourage students to use visual elements, arrows, and labels to represent connections and interdependencies between concepts.

2. Laboratory Experiment

Select a laboratory experiment related to one of the topics, such as motion of objects or electric and magnetic fields.

Provide the necessary materials, instructions, and safety guidelines for conducting the experiment.

Students will work in small groups to carry out the experiment, collect data, and analyze the results.

After the experiment, students will write a lab report summarizing their findings, observations, and conclusions.

UNIT III: ESSENTIALS OF CHEMISTRY

1: Chemistry in Daily Life Presentation

Divide students into groups and assign each group a specific aspect of daily life where chemistry plays a significant role, such as food and nutrition, household products, medicine, or environmental issues.

Students will research and create a presentation (e.g., PowerPoint, poster, or video) that showcases the importance of chemistry in their assigned aspect.

2: Periodic Table Exploration

Provide students with a copy of the periodic table.

Students will explore the periodic table and its significance in organizing elements based on their properties.

They will identify and analyze trends in atomic structure, such as electronic configuration, atomic size, and ionization energy.

3: Chemical Changes and Classification of Matter

Provide students with various substances and chemical reactions, such as mixing acids and bases or observing a combustion reaction.

Students will observe and describe the chemical changes that occur, including changes in color, temperature, or the formation of new substances.

4: Biomolecules Investigation

Assign each student or group a specific biomolecule category, such as carbohydrates, proteins, fats, or vitamins.

Students will research and gather information about their assigned biomolecule category, including its structure, functions, sources, and importance in the human body.

They can create informative posters or presentations to present their findings to the class.

UNIT IV: APPLICATIONS OF MATHEMATICS, PHYSICS & CHEMISTRY

1: Interdisciplinary Case Studies

Divide students into small groups and provide them with interdisciplinary case studies that involve the interdisciplinary application of mathematics, physics, and chemistry.

Each case study should present a real-world problem or scenario that requires the integration of concepts from all three disciplines.

2: Design and Innovation Project

Challenge students to design and develop a practical solution or innovation that integrates mathematics, physics, and chemistry principles.

Students can choose a specific problem or area of interest, such as renewable energy, environmental conservation, or materials science.

3: Laboratory Experiments

Assign students laboratory experiments that demonstrate the practical applications of mathematics, physics, and chemistry.

Examples include investigating the relationship between concentration and reaction rate, analyzing the behavior of electrical circuits, or measuring the properties of materials.

.4: Mathematical Modeling

Present students with real-world problems that require mathematical modeling and analysis.

UNIT V: ESSENTIALS OF COMPUTER SCIENCE:

- 1. Identifying the attributes of network (Topology, service provider, IP address and bandwidth of
- 2. your college network) and prepare a report covering network architecture.
- 3. Identify the types of malwares and required firewalls to provide security.
- 4. Latest Fraud techniques used by hackers.

Course – I & II Model Paper Time: 3Hrs (70 Marks)

SECTION A (Multiple Choice Questions)	$30 \times 1 = 30 M$
30 Multiple Choice Questions (Each Unit 6 Questions)	
SECTION B (Fill in the blanks)	$10 \times 1 = 10 M$
10 Fill in the Blanks (Each Unit 2 Questions)	
SECTION C (Very short answer questions)	$10 \times 1 = 10 M$
10 Very short answer questions (Each Unit 2 Questions)	
SECTION D (Matching) (From 5 Units)	$2 \times 5 = 10 M$
I A	
\boldsymbol{B}	
C	
D	
$oldsymbol{E}$	
2 A	
\boldsymbol{B}	
C	
D	
$oldsymbol{E}$	
SECTION E (True or False)	$10 \times 1 = 10 M$

10 True or False (Each Unit 2 Questions)

Single Major (w.e.f. AY 2023-24) SEMESTER-I

COURSE – 1 ESSENTIALS AND APPLICATIONS OF MATHEMATICAL, PHYSICAL & CHEMICAL SCIENCES

	Time:3hrs	MAX	X MARKS: 70 M
I	Multiple Choice Questions		3x10=30M
1.	If $Arg(\overline{Z}) < 0$ the $Arg(-Z) - arg(Z) =$	[
	a) π b) $\frac{\pi}{4}$ c) $\frac{\pi}{2}$ d) $\frac{\pi}{2}$		
2.	If $\left \frac{Z_1}{Z_2} \right = 1$ and Arg $(Z_1 Z_2) = 0$ then]	1
	a) $Z_1 = Z_2$ b) $ Z_1 ^2 = Z_1 Z_2$ c) $Z_1 Z_2 = 1$ d) No	one of these	
3.	The value of $\sin 50^{\circ} - \sin 70^{\circ} + \sin 10^{\circ}$ is equal to	[]
	a) 1 b) 0 c) ½ d) 2		•
4.	If $\overline{a} + m\overline{b} + 3\overline{c}$, $-2\overline{a} + 3\overline{b} - 5\overline{c}$ and $\overline{a} - 3\overline{b} - 5\overline{c}$ are	coplanar m=]
	a) 2 b) -1 c) 1 d) -9		_
5.	If the vectors $2\overline{i} + \lambda \overline{j} - k$ and $4\overline{i} - 2\overline{j} + 2\overline{k}$ are per		
	then	•	
	$\lambda = $	[]	
	$\lambda = \underline{\hspace{1cm}}$ a) 2 b) 5 c) 3 d) 1 Find the mode for the following data 0.0.1.1.2.2.2		
6.	Find the mode for the following data 0,0,1,1,2,2,2,	4,5. []	
	a) 1 b) 0 c) 4 d) 2		
7.	Newton – Second is the unit of	[]	
	a) Velocity b) Angular Momentum	c) Momentum d) Energy
8.	If the force applied to a body is doubled and the m	ass is cut in half. What	
	would be the acceleration ratio?	[]	
	a) 1:2 b) 2:1 c) 1:4 d) 4:	1	
9.	Which unit is used to measure angle the S.I system	1? []	
	a) Radian b) Steradian c) Degree	d) Minute	
10.	The mass – Energy relation is given by	[]	
	a) $E = mc^2$ b) $F = ma$ c) $P = ma$	= mv d) W = I	Fd
11.	How many types of Robots are there	[]	
	a) 7 b) 10 c) 6	d) 8	
12.	Light energy emitted by stars is due to	[]	
	a) Breaking of nuclei b) Joining of		
		of Solar Light	
13.	Organic chemistry is the study of	[]	
	a) Nitrogen based compoundsb) Carbon based com	=	
		n based compounds	
14.	Number of electrons present in outer shell of chlor	rine atom is[
	a) 5 b) 6 c) 7 d) 8		
15.	Which of the following is a disacchanide		
		uctose d) Ribos	e
16.	The Monomers present in proteins are		
17		mino acids d) Esters	8
17.	Lipids composed mainly of		CI
	a) C, H, N b) C, H, O c) O,	N, S d) N, S ,	U

18.	Vitamin by is also known as [
	a) Vitamin – H b) Vitamin – O c) Vitamin – Bd) Vitamin – L	
19.	Who is introduced in Calculus [
	a) Isaac Newton b) Goff fried Leibniz	
	c) Both of the mentioned d) None of the mentioned	
20.	How many systems does a robot have [
	a) 2 b) 6 c) 4 d) 3	
21.	A place where power information (or) a result leaves a system. [
	a) Chassis b) Output c) Sensor d) Input	
22.	The main electronic component used in first generation computers was []	
	a) Transistors b) Vacuum Tubes and Valves	
	c) Integrated Circuits d) None of above	
23.	Magnetic disk is an example of []
	a) Secondary memory b) Primary memory	
	c) Main memory d) Both 1 & 2	
24.	http stands for []
	a) hypertext transfer protocol b) hypertext transmission protocol	
	c) high transfer transport protocol d) hyper transfer text protocol	
25.	What is the full form of WWW?]
	a) World Wide Web b) World with Web	
	c) Work Wide Web d) World Wide Wet	
26.	Which one of the following is a type of antivirus program? []	
	a) Quick heal b) Mcafee	
27	c) Kaspersky d) All of the above	
27.	Hackers usually used the computer virus forpurpose. []	
	a) To log, monitor each and every user's stroke	
	b) To gain access the sensitive information like user's Id and Passwordsc) To corrupt the user's data stored in the computer system	
	d) All of the above	
28.	Which of the following is an example of f BDD screening technique []	
20.	a) U V spectroscopy b) HPLC c) NMR spectroscopy d) None	
29.	Fertilizers mainly consists of []	
27.	a) N, P, K b) O, N, Cl c) C, O, K d) H, P, O	
30.	The substance that facilitate chemical reactions without being consumed is	
	a) Reactions b) Product c) Catalyst d) Inhibin	
	$\underline{\mathbf{SECTION}} - \underline{\mathbf{B}}$	
II	Fill in the Blanks 10x	1=10M
1.	Find the value of $\sqrt{3}\cos ec20^{\circ} - \sec 20^{\circ}$ is	
2.	The area of the parallelogram whose diagonals are $3i + j - 2k$ and $i - 3j + 4k$	
	is	
3.	is the number of cycles made by a sounding body per unit time.	
4.	A light year is a unit of	
5.	EXPAND SAR	
6.	Peptide bond formula	
7.	A robot is a Differential equations that the definition of linear are nonlinear	
8.	A string of 8 hits is	u´.
9. 10.	A string of 8 bits is	
10.	ROM stands for	

SECTION - C

III Answer the following Short Questions

10x1=10M

- 1. If $3 \tan A = 5$ then Find Sin A and Cos A.
- 2. Find A.M from the following distribution.

Wages	100	120	140	160	180	200
No of workers	4	8	12	7	6	3

- 3. Write any two applications of Semi Conductor?
- 4. Define Zeroth law of Thermodynamics? with example.
- 5. Expand FBDD.
- 6. What are fat soluble vitamins?
- 7. Define Newton's 1st Law.
- 8. Write any two application of Environmental monitoring?
- 9. What is E-mail?
- 10. What is a gateway?

SECTION – D

III Match the following

10x1=10M

1. A. Unit Vector in the

direction $\vec{a} = 3\vec{i} - 2\vec{j} + 6\vec{k}$

-) a) Angular Momentum
- B. Polar form $-1 + \sqrt{3}i$
- () b) Glucose

C. Joule x Sec

() c) $\frac{1}{7}$ $\left(3i-2j+6k\right)$

D. Mass of a proton

 $\int_{1}^{\pi} \int_{1}^{\pi} \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)$

E. Reducing Sugar

() e) 1.676 x 10⁻²⁴ grams

- 2. A. Vitamin B12
 - B. Force
 - C. Impulse
 - D. Punch Card
 - E. Joy Stick

- () a) Newton
- () b) Newton second
- () c) RBC formation
- () d) Computer games
- () e) Hollerith code

SECTION – E

10x1=10M

IV True (or) False

1. If Z is a complex number then ZZ is purely real.

- 2. If Z is a complex number such that $Z^2 = (\overline{Z})^2$ then purely real.
- 3. The Mass of a body is equivalent to the ratio of the force action on it to the acceleration it generates.
- 4. The region of the atmosphere above troposphere is known as Lithosphere.
- 5. Essential Amino acids can be synthesized by the human body
- 6. Electrons fill the lowest energy levels first
- 7. For every action is nature here is an unequal and opposite reaction.
- 8. The special theory of relativity is concerned with frames of reference that are not experiencing any acceleration.
- 9. A terabyte is equal to 1 million gigabytes
- 10. Remote browser access is used to avoid browser-based hacking.

SEMESTER-I COURSE 2: ADVANCES IN MATHEMATICAL, PHYSICALAND CHEMICAL SCIENCES

Theory Credits: 4 5 hrs/week

Course Objective:

The objective of this course is to provide students with an in-depth understanding of the recent advances and cutting-edge research in mathematical, physical, and chemical sciences. The course aims to broaden students' knowledge beyond the foundational concepts and expose them to the latest developments in these disciplines, fostering critical thinking, research skills, and the ability to contribute to scientific advancements.

Learning outcomes:

- 1. Explore the applications of mathematics in various fields of physics and chemistry, to understand how mathematical concepts are used to model and solve real-world problems.
- 2. To Explain the basic principles and concepts underlying a broad range of fundamental areas of physics and to Connect their knowledge of physics to everyday situations.
- 3. Understand the different sources of renewable energy and their generation processes and advances in nanomaterials and their properties, with a focus on quantum dots. To study the emerging field of quantum communication and its potential applications. To gain an understanding of the principles of biophysics in studying biological systems. Explore the properties and applications of shape memory materials.
- 3. Understand the principles and techniques used in computer-aided drug design and drug delivery systems, to understand the fabrication techniques and working principles of nanosensors. Explore the effects of chemical pollutants on ecosystems and human health.
- 4. Understand the interplay and connections between mathematics, physics, and chemistry in various advanced applications. Recognize how mathematical models and physical and chemical principles can be used to explain and predict phenomena in different contexts.
- 5 Understand and convert between different number systems, such as binary, octal, decimal, and hexadecimal. Differentiate between analog and digital signals and understand their characteristics. Gain knowledge of different types of transmission media, such as wired (e.g., copper cables, fiber optics) and wireless (e.g., radio waves, microwave, satellite).

UNIT I: ADVANCES IN BASICS MATHEMATICS

Straight Lines: Different forms – Reduction of general equation into various forms – Point of intersection of two straight lines

Limits and Differentiation: Standard limits – Derivative of a function – Problems on product rule and quotient rule

Integration: Integration as a reverse process of differentiation – Basic methods of integration

Matrices: Types of matrices – Scalar multiple of a matrix – Multiplication of matrices – Transpose of a matrix and determinants

UNIT II: ADVANCES IN PHYSICS:

Renewable energy: Generation, energy storage, and energy-efficient materials and devices. **Recent advances in the field of nanotechnology**: Quantum dots, Quantum Communication-recent advances in biophysics- recent advances in medical physics- Shape Memory Materials.

UNIT III: ADVANCES IN CHEMISTRY:

Computer aided drug design and delivery, nano sensors, Chemical Biology, impact of chemical pollutants on ecosystems and human health, Dye removal - Catalysis method

UNIT IV: ADVANCED APPLICATIONS OF MATHEMATICS, PHYSICS & CHEMISTRY

Mathematical Modelling applications in physics and chemistry

Application of Renewable energy: Grid Integration and Smart Grids,

Application of nanotechnology: Nanomedicine,

Application of biophysics: Biophysical Imaging, Biomechanics, Neurophysics,

Application of medical physics: Radiation Therapy, Nuclear medicine

Solid waste management, Environmental remediation- Green Technology, Water treatment.

UNIT V: Advanced Applications of computer Science

Number System-Binary, Octal, decimal, and Hexadecimal, Signals-Analog, Digital, Modem, Codec, Multiplexing, Transmission media, error detection and correction- Parity check and CRC, Networking devices- Repeater, hub, bridge, switch, router, gateway.

Recommended books:

- 1. Coordinate Geometry by S.L.Lony, Arihant Publications
- 2. Calculus by Thomas and Finny, Pearson Publications
- 3. Matrices by A.R. Vasishtha and A.K. Vasishtha, Krishna Prakashan Media(P)Ltd.
- 4. "Renewable Energy: Power for a Sustainable Future" by Godfrey Boyle
- 5. "Energy Storage: A Nontechnical Guide" by Richard Baxter
- 6. "Nanotechnology: Principles and Applications" by Sulabha K. Kulkarni and Raghvendra A. Bohara
- 7. "Biophysics: An Introduction" by Rodney Cotterill
- 8. "Medical Physics: Imaging" by James G. Webster
- 9. "Shape Memory Alloys: Properties and Applications" by Dimitris C. Lagoudas
- 10. Nano materials and applications by M.N.Borah
- 11. Environmental Chemistry by Anil.K.D.E.
- 12. Digital Logic Design by Morris Mano
- 13. Data Communication & Networking by Bahrouz Forouzan.

STUDENT ACTIVITIES

UNIT I: ADVANCES IN BASIC MATHEMATICS

1: Straight Lines Exploration

Provide students with a set of equations representing straight lines in different forms, such as slope-intercept form, point-slope form, or general form.

Students will explore the properties and characteristics of straight lines, including their slopes, intercepts, and point of intersection.

2: Limits and Differentiation Problem Solving

Students will apply the concept of limits to solve various problems using standard limits.

Encourage students to interpret the results and make connections to real-world applications, such as analyzing rates of change or optimizing functions.

3: Integration Exploration

Students will explore the concept of integration as a reverse process of differentiation and apply basic methods of integration, such as the product rule, substitution method, or integration by parts.

Students can discuss the significance of integration in various fields, such as physics and chemistry

4: Matrices Manipulation

Students will perform operations on matrices, including scalar multiplication, matrix multiplication, and matrix transpose.

Students can apply their knowledge of matrices to real-world applications, such as solving systems of equations or representing transformations in geometry.

UNIT II: ADVANCES IN PHYSICS:

1: Case Studies

Provide students with real-world case studies related to renewable energy, nanotechnology, biophysics, medical physics, or shape memory materials.

Students will analyze the case studies, identify the challenges or problems presented, and propose innovative solutions based on the recent advances in the respective field. They will consider factors such as energy generation, energy storage, efficiency, sustainability, materials design, biomedical applications, or technological advancements.

2: Experimental Design

Assign students to design and conduct experiments related to one of the topics: renewable energy, nanotechnology, biophysics, medical physics, or shape memorymaterials.

B.Sc. Honours Course Syllabus (Single Major) (w.e.f:2023-24A.B)

They will identify a specific research question or problem to investigate and design an experiment accordingly.

Students will collect and analyze data, interpret the results, and draw conclusions based on their findings.

They will discuss the implications of their experimental results in the context of recent advances in the field.

3: Group Discussion and Debate

Organize a group discussion or debate session where students will discuss the ethical, social, and environmental implications of the recent advances in renewable energy, nanotechnology, biophysics, medical physics, and shape memory materials.

Assign students specific roles, such as proponent, opponent, or moderator, and provide them with key points and arguments to support their positions.

UNIT III: ADVANCES IN CHEMISTRY:

1. Experimental Design and Simulation

In small groups, students will design experiments or simulations related to the assigned topic.

For example, in the context of computer-aided drug design, students could design a virtual screening experiment to identify potential drug candidates for a specific disease target.

For nano sensors, students could design an experiment to demonstrate the sensitivity and selectivity of nano sensors in detecting specific analytes.

Chemical biology-related activities could involve designing experiments to study enzyme-substrate interactions or molecular interactions in biological systems. Students will perform their experiments or simulations, collect data, analyze the results, and draw conclusions based on their findings.

2. Case Studies and Discussion

Provide students with real-world case studies related to the impact of chemical pollutants oneco systems and human health.

Students will analyze the case studies, identify the sources and effects of chemical pollutants, and propose mitigation strategies to minimize their impact.

Encourage discussions on the ethical and environmental considerations when dealing with chemical pollutants.

For the dye removal using the catalysis method, students can explore case studies where catalytic processes are used to degrade or remove dyes from wastewater.

Students will discuss the principles of catalysis, the advantages and limitations of the catalysis method, and its applications in environmental remediation.

3: Group Project

Assign students to work in groups to develop a project related to one of the topics.

The project could involve designing a computer-aided drug delivery system, developing a nano sensor for a specific application, or proposing strategies to mitigate the impact of

chemical pollutants on ecosystems.

Students will develop a detailed project plan, conduct experiments or simulations, analyze data, and present their findings and recommendations.

Encourage creativity, critical thinking, and collaboration throughout the project.

UNIT IV: ADVANCED APPLICATIONS OF MATHEMATICS, PHYSICS & CHEMISTRY

1: Mathematical Modelling Experiment

Provide students with a mathematical modelling experiment related to one of the topics. For example, in the context of renewable energy, students can develop a mathematical model to optimize the placement and configuration of solar panels in a solar farm.

Students will work in teams to design and conduct the experiment, collect data, and analyze the results using mathematical models and statistical techniques.

They will discuss the accuracy and limitations of their model, propose improvements, and interpret the implications of their findings in the context of renewable energy or the specific application area.

2: Case Studies and Group Discussions

Assign students to analyze case studies related to the applications of mathematical modelling in nanotechnology, biophysics, medical physics, solid waste management, environmental remediation, or water treatment.

Students will discuss the mathematical models and computational methods used in the case studies, analyze the outcomes, and evaluate the effectiveness of the modelling approach. Encourage group discussions on the challenges, ethical considerations, and potential advancements in the field.

Students will present their findings and engage in critical discussions on the advantages and limitations of mathematical modelling in solving complex problems in these areas.

3. Group Project

Assign students to work in groups to develop a group project that integrates mathematical modelling with one of the application areas: renewable energy, nanotechnology, biophysics, medical physics, solid waste management, environmental remediation, or water treatment.

The project could involve developing a mathematical model to optimize the delivery of radiation therapy in medical physics or designing a mathematical model to optimize waste management practices.

Students will plan and execute their project, apply mathematical modelling techniques, analyze the results, and present their findings and recommendations. Encourage creativity, critical thinking, and collaboration throughout the project.

UNIT V: Advanced Applications of computer Science

Students must be able to convert numbers from other number system to binary number systems

- 1. Identify the networking media used for your college network
- 2. Identify all the networking devices used in your college premises.

Course – I & II Model Paper Time: 3Hrs (70 Marks)

SECTION A (Multiple Choice Questions) 30 Multiple Choice Questions (Each Unit 6 Questions)	$30 \times 1 = 30 M$
SECTION B (Fill in the blanks) 10 Fill in the Blanks (Each Unit 2 Questions)	$10 \times 1 = 10 M$
SECTION C (Very short answer questions) 10 Very short answer questions (Each Unit 2 Questions)	$10 \times 1 = 10 M$
SECTION D (Matching) (From 5 Units) 1 A	$2 \times 5 = 10 M$
B C D	
$oldsymbol{E}$	
2 A B C	
D E	

SECTION E (True or False)

10 True or False (Each Unit 2 Questions)

 $10 \times 1 = 10 M$

Single Major (w.e.f. AY 2023-24) SEMESTER-I Model Paper

COURSE -2 ADVANCES OF MATHEMATICAL, PHYSICAL & CHEMICAL SCIENCES Time: 3Hrs MAX MARKS: 70 M

I	Multiple Choice Questions SECTIO	N A	3x10=30M			
1.	The equation of the line passing through the point		dicular to the	line $x+y+1=0$ is		
]		
	a) $y-x+1=0$ b) $y-x-1=0$ c) $y-x-1=0$	y-x+2=0	d) y-x-2=0			
2.	a) $y-x+1=0$ b) $y-x-1=0$ c) $y-x-1=0$ c) $y-x-1=0$ c) $y-x-1=0$ c) $y-x-1=0$ c) $y-x-1=0$ d) $y-x-1=0$ d) $y-x-1=0$ e) $y-x-1=0$ d) $y-x-1=0$ e) $y-x-1=0$ d) $y-x-1=0$ e)		[]		
3.	The derivative of $\cos^{-1}(2x^2-1)$ w.r.to $\cos^{-1}(x)$	is	[]		
	$\begin{pmatrix} 1 & -1 & 2 \end{pmatrix}$	d) 1 v^2	L	,		
	The derivative of $\cos^{-1}(2x^2 - 1)$ w.r.to $\cos^{-1}(x)$ a) 2 b) $\frac{-1}{2\sqrt{1-x^2}}$ c) $\frac{2}{x}$	u) 1- x				
4.	$\int e^{\tan x} \sec^2 x dx =$		[]		
••						
	a) e^{-x} b) e^{-x} c) $\tan x$ d) $\sin x$ $\begin{bmatrix} 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 3 & 4 \end{bmatrix}$					
5.	a) $e^{\tan x}$ b) $e^{\sin x}$ c) $\tan x$ d) $\sin x$ If $2x + y = \begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix}$ and $2x - y = \begin{bmatrix} 3 & 4 \\ -1 & 2 \end{bmatrix}$ then $\begin{bmatrix} 4 & 4 \\ -4 & 4 \end{bmatrix}$ b) $\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$ c)	n X is equal to	[]		
	$\begin{bmatrix} -3 & 2 \end{bmatrix}$ $\begin{bmatrix} -1 & 2 \end{bmatrix}$	Γ1 2J				
	a) 4 4 b) 1 1 c)	$\begin{bmatrix} -1 & -2 \\ -1 & 0 \end{bmatrix}$	d) None of the	ese		
_			-			
6.	If $A = [aij]_{mn}$ such that $aij = 0$ for $i \neq j$ then A is]		
	a) a row matrix b) a colum	in matrix				
7.	c) a diagonal matrix d) a scalar matrix Which of the following is an renewable energy s	COURCE	Г]		
7.	9,		d) Nuclear	J		
8.	What is the main purpose of Photovoltaic cells in			1		
	a) Heat generation b) Electricity generation	-	cation d) Car	bon captune		
9.	Which renewable energy source is harnessed fro	· •	,	1		
	Internal heat?		[]		
			d) Hydro			
10.	What is the fundamental principle behind quantu		[]		
	a) Classical Mechanics b) Quantum Superposition	,	,	Maxwell's equation		
11.	What is the primary application of proton therap]		
	a) Diagnostic Imaging b) Radiation therapy c) N	Magnetic resonance	Imaging			
12.	d) Computed Tomography (C.T) What is the primary advantage of using quantum	n dob in color colle?	Г	1		
12.	what is the primary advantage of using quantum	i dob ili solai celis!	[]		
	a) Low cost b) 1	High efficiency				
	c) Fast charging d) l	Large size				
13.	The Binding capacity between the drug and targ		[]		
	,		d) None			
14.	The Increased sensitivity of Nanosensors is due].	J		
1.5	, 6	Low surface-to-volu	ume ratio	1		
15.	The green pigment chlorophyll is affected by a) Co ₂ b) No ₂ c) So ₂ d) CH ₄		L]		

16.	What is the Photo catalyst used i	n the dye rer	noval cataly	sis method		[]
	a) Oxygen b) Hydrog	en	c) Titanium	Oxide	d) Zino	:	
17.			*		s a needle	– like	structure
	1 1	J	C	1		[1
	a) Martensite b) Austenite	c) Hyst	erisis	d) None		_	,
18.	·			,		[1
10.		-	d) O ₃			L	1
19.	, – , – ,	=	, -	ndamental Equ	ation.	used t	o model the
	behavior of particles. What does				,	Г	1
	a) Stability			article duality		L	J
	c) Degidity		d) Massive	rticie dudnity			
20.			*	no particles to 6	nhance in	naging	techniques
20.	for medical diagnostics	, the process	of using na	no particles to c	illiance in	raging	icenniques I
	a) Nano Scopy b) Nano T	hereny	c) Nano Dia	nanose d) N	lone of the		
21	= -		,	•	one or the	r r	1
21.		-		ome !		L]
	a) By increasing the cost of medi		ıı.				
	b) By using a one-size –fits all ap		1				
	c) By tailoring based on an indiv	_		•			
22	d) By avoiding the use of advance		_	22 6		r	1
22.	13,		incy therapy	refer to		[]
	a) External beam radiation therap	•					
	b) Radiation therapy using photo						
	c) Internal radiation therapy invo	olving the pla	acement of	radio active sou	rces dire	ectly w	ithin or
	close to the tumor.		_				
	d) Radiation therapy without the	_	_	_		_	_
23.	1 1	on in the wa	ter treatmen	t process?		[]
	a) Removing dissolved minerals						
	b) Disinteching water						
	c) Settling suspended particals						
	d) Adjusting PH levels						
24.	1 1 0		and constru	iction?		[]
	a) maximizing energy consumpti						
	b) minimizing the use of sustaina	ıble material	S				
	c) Reducing the environmental in	-	ldings				
	d) Ignoring energy – efficient ted	_					
25.	Hybrid system combine which tw	vo types of s	signals?			[]
	a) Analog and Analog b) Dig	ital and Digi	tal c) Ana	alog and Digital	d) Con	tinuous	s and Finite
26.	Which error detection technique	can detect a	wide range	of errors includ	ing burst 6	errors a	and most
	multiple bits.						
	a) Hamming code b) Read-	Solomon co	de c) P	arity check	d) (CRC	
27.	Which layer of the OSI model do	es a router o	perate at				[]
	a) Transport layer b)	Network lay	ver c)	Transport layer	d) Da	ata link	layer
28.	What technology allows DSL mod	dems to sepa	rate voice a	nd data signals.			
	a) Dail-up modem b)	DSL moden	n	c) Wireless mo	odem	d) Ca	ble modem
	Ans b) DSL modem						
29.	What protocol do bridges use to	prevent netv	vork loops?			[]
	<u> </u>	-	-	rotocol (TCP)			
	c) Simple Network Management				rotocol (S	ГР)	
30.					correspon		oits
	a) Hamming code		b) Hammin		1	[]
	c) Hamming rule		d) Hammin	-			

D. 11110001

E. Ethernet cable

ADIKAVI NANNAYA UNIVERSITY: RAJMAHENDRAVARAM Single Major B.Sc Chemistry (w.e.f:2023-24A.B)

SECTION – B Ш Fill in the Blanks 10x1=10M1. Tidal energy is an Example for ___ 2. _are the particles used in quantum dots. 3. Expand CADD First step in the purification of water 4. is an application for Medical Physics. 5. MRI stands for _____ 6. $\int e^x \sin x \cos x dx = \underline{\qquad}.$ 7. Equation of the lines through the point (3, 2) and making an angle of 45° with the line x-2y=3 are 8. 9. A computer understands only.....code 10......converts audio and video into digital information SECTION - C Ш **Answer the following Questions** 10x1=10M1. Give some Examples for renewable sources? 2. Information stored in quantum computer in the form of? What is the difference between MRI and C.T. Scan? 3. Name two applications of Nanotechnology? 4. Solid waste Management? (SWM) 5. **Expand ADMET** 6. $x \xrightarrow{L} 0 \frac{ax + x \cos x}{b \sin x}$; Evaluate 7. Evaluate $\int x(\log x)^2 dx$ 8. 9. What are the key design issues of the computer networks? What is multiplexing? 10. SECTION – D Ш Match the following 10x1=10MA. Wind energy) a) Orthodontic applications 1.) b) Non invasile imaging B. Solar energy) c) Harness the kinetic energy of C. Minamata wind to produce electricity) d) Convert sunlight into electricity D. Ni-Ti wire E. Magnetic Resonance Imaging) e) Mercury 2. A. Fluoroscene microscopy) a) 3 B. $\begin{bmatrix} 3 & -4 \\ m & 5 \end{bmatrix} = 3$ then m value is) b) Moniterity cellular $C. \frac{d}{dx} \left[\log \left(\sec x + \tan x \right) \right]$) c) F1

) d) Guided media

) e) (secx)

SECTION - E

IV True (or) False

10x1=10M

- 1. Quantum dots are the nano particles, are primarily used for structural Reintor cement in medical implants?
- 2. Quantum mechanics is a branch of physics Extensively used mathematical Models, to describe the behavior of particles at atomic and subatomic level.
- 3. The Mass of a body is equivalent to the ratio of the force action on it to the acceleration it generates.
- 4. The region of the atmosphere above troposphere is known as Lithosphere.
- 5. Essential Amino acids can be synthesized by the human body
- 6. Electrons fill the lowest energy levels first
- 7. The equation of a line with slope m and making an intercept c on y axis is y=mx
- 8. Intercept form of a line which cuts a and b respectively on the x and y axis

Then
$$\frac{x}{a} + \frac{y}{b} = 1$$

- 9. A university would use a CAN to converts its composes in two cities.
- 10. Gateway device is operate at transport layer.